Popular Science gives our readers the information and tools to improve their technology and their world. The core belief that Popular Science and our readers share: The future is going to be better, and science and technology are the driving forces that will help make it better.
"Instead of being an abstraction, the math in this book comes alive as the tool that EEs have always thought it to be.... (This book) does a good Job not only of teaching the underlying theory of radio, but also of entertaining readers". -- EDN Unlike most texts, which begin with a deluge of scientific detail. The Science of Radio starts from a global perspective and gradually introduces theory and formula. The author employs a "just in time" strategy, introducing mathematical and physical ideas only as they are needed to understand a topic. The material is accessible to any student who has completed a first-year calculus and physics course.
Popular Science gives our readers the information and tools to improve their technology and their world. The core belief that Popular Science and our readers share: The future is going to be better, and science and technology are the driving forces that will help make it better.
Popular Science gives our readers the information and tools to improve their technology and their world. The core belief that Popular Science and our readers share: The future is going to be better, and science and technology are the driving forces that will help make it better.
This book offers an extensive analysis of Woolf's engagement with science. It demonstrates that science is integral to the construction of identity in Woolf's novels of the 1930s and 1940s, and identifies a little-explored source for Woolf's scientific knowledge: BBC scientific radio broadcasts. By analyzing this unstudied primary material, it traces the application of scientific concepts to questions of identity and highlights a single concept that is shared across multiple disciplines in the modernist period: the idea that modern science undermined individualized conceptions of the self. It broadens our understanding of the relationship between modernism and radio, modernism and science, and demonstrates the importance of science to Woolf's later novels.
Explore the development and state-of-the-art in deep space exploration using radio science techniques In Radio Science Techniques for Deep Space Exploration, accomplished NASA/JPL researcher and manager Sami Asmar delivers a multi-disciplinary exploration of the science, technology, engineering, mission operations, and signal processing relevant to deep space radio science. The book discusses basic principles before moving on to more advanced topics that include a wide variety of graphical illustrations and useful references to publications by experts in their respective fields. Complete explanations of changes in the characteristics of electromagnetic waves and the instrumentation and technology used in scientific experiments are examined. Radio Science Techniques for Deep Space Exploration offers answers to the question of how to explore the solar system with radio links and better understand the interior structures, atmospheres, rings, and surfaces of other planets. The author also includes: Thorough introductions to radio science techniques and systems needed to investigate planetary atmospheres, rings, and surfaces Comprehensive explorations of planetary gravity and interior structures, as well as relativistic and solar studies Practical discussions of instrumentation, technologies, and future directions in radio science techniques Perfect for students and professors of physics, astronomy, planetary science, aerospace engineering, and communications engineering, Radio Science Techniques for Deep Space Exploration will also earn a place in the libraries of engineers and scientists in the aerospace industry.
How radio astronomers challenged national borders, disciplinary boundaries, and the constraints of vision to create an international scientific community. For more than three thousand years, the science of astronomy depended on visible light. In just the last sixty years, radio technology has fundamentally altered how astronomers see the universe. Combining the wartime innovation of radar and the established standards of traditional optical telescopes, the “radio telescope” offered humanity a new vision of the universe. In A Single Sky, the historian David Munns explains how the idea of the radio telescope emerged from a new scientific community uniting the power of radio with the international aspirations of the discipline of astronomy. The radio astronomers challenged Cold War era rivalries by forging a united scientific community looking at a single sky. Munns tells the interconnecting stories of Australian, British, Dutch, and American radio astronomers, all seeking to learn how to see the universe by means of radio. Jointly, this international array of radio astronomers built a new “community” style of science opposing the “glamour” of nuclear physics. A Single Sky describes a communitarian style of science, a culture of interdisciplinary and international integration and cooperation, and counters the notion that recent science has been driven by competition. Collaboration, or what a prominent radio astronomer called “a blending of radio invention and astronomical insight,” produced a science as revolutionary as Galileo's first observations with a telescope. Working together, the community of radio astronomers revealed the structure of the galaxy.