Numerical Methods in Computational Finance

Numerical Methods in Computational Finance

Author: Daniel J. Duffy

Publisher: John Wiley & Sons

ISBN: 9781119719670

Category: Business & Economics

Page: 551

View: 714

This book is a detailed and step-by-step introduction to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method and applications to computational finance. The book is structured so that it can be read by beginners, novices and expert users. Part A Mathematical Foundation for One-Factor Problems Chapters 1 to 7 introduce the mathematical and numerical analysis concepts that are needed to understand the finite difference method and its application to computational finance. Part B Mathematical Foundation for Two-Factor Problems Chapters 8 to 13 discuss a number of rigorous mathematical techniques relating to elliptic and parabolic partial differential equations in two space variables. In particular, we develop strategies to preprocess and modify a PDE before we approximate it by the finite difference method, thus avoiding ad-hoc and heuristic tricks. Part C The Foundations of the Finite Difference Method (FDM) Chapters 14 to 17 introduce the mathematical background to the finite difference method for initial boundary value problems for parabolic PDEs. It encapsulates all the background information to construct stable and accurate finite difference schemes. Part D Advanced Finite Difference Schemes for Two-Factor Problems Chapters 18 to 22 introduce a number of modern finite difference methods to approximate the solution of two factor partial differential equations. This is the only book we know of that discusses these methods in any detail. Part E Test Cases in Computational Finance Chapters 23 to 26 are concerned with applications based on previous chapters. We discuss finite difference schemes for a wide range of one-factor and two-factor problems. This book is suitable as an entry-level introduction as well as a detailed treatment of modern methods as used by industry quants and MSc/MFE students in finance. The topics have applications to numerical analysis, science and engineering. More on computational finance and the author’s online courses, see www.datasim.nl.

Handbook of Computational and Numerical Methods in Finance

Handbook of Computational and Numerical Methods in Finance

Author: Svetlozar T. Rachev

Publisher: Springer Science & Business Media

ISBN: 0817632190

Category: Business & Economics

Page: 456

View: 257

The subject of numerical methods in finance has recently emerged as a new discipline at the intersection of probability theory, finance, and numerical analysis. The methods employed bridge the gap between financial theory and computational practice, and provide solutions for complex problems that are difficult to solve by traditional analytical methods. Although numerical methods in finance have been studied intensively in recent years, many theoretical and practical financial aspects have yet to be explored. This volume presents current research and survey articles focusing on various numerical methods in finance. Key topics covered include: methodological issues, i.e., genetic algorithms, neural networks, Monte–Carlo methods, finite difference methods, stochastic portfolio optimization, as well as the application of other computational and numerical methods in finance and risk management. The book is designed for the academic community and will also serve professional investors. Contributors: K. Amir-Atefi; Z. Atakhanova; A. Biglova; O.J. Blaskowitz; D. D’Souza; W.K. Härdle; I. Huber; I. Khindanova; A. Kohatsu-Higa; P. Kokoszka; M. Montero; S. Ortobelli; E. Özturkmen; G. Pagès; A. Parfionovas; H. Pham; J. Printems; S. Rachev; B. Racheva-Jotova; F. Schlottmann; P. Schmidt; D. Seese; S. Stoyanov; C.E. Testuri; S. Trück; S. Uryasev; and Z. Zheng.

Novel Methods in Computational Finance

Novel Methods in Computational Finance

Author: Matthias Ehrhardt

Publisher: Springer

ISBN: 9783319612829

Category: Mathematics

Page: 606

View: 164

This book discusses the state-of-the-art and open problems in computational finance. It presents a collection of research outcomes and reviews of the work from the STRIKE project, an FP7 Marie Curie Initial Training Network (ITN) project in which academic partners trained early-stage researchers in close cooperation with a broader range of associated partners, including from the private sector. The aim of the project was to arrive at a deeper understanding of complex (mostly nonlinear) financial models and to develop effective and robust numerical schemes for solving linear and nonlinear problems arising from the mathematical theory of pricing financial derivatives and related financial products. This was accomplished by means of financial modelling, mathematical analysis and numerical simulations, optimal control techniques and validation of models. In recent years the computational complexity of mathematical models employed in financial mathematics has witnessed tremendous growth. Advanced numerical techniques are now essential to the majority of present-day applications in the financial industry. Special attention is devoted to a uniform methodology for both testing the latest achievements and simultaneously educating young PhD students. Most of the mathematical codes are linked into a novel computational finance toolbox, which is provided in MATLAB and PYTHON with an open access license. The book offers a valuable guide for researchers in computational finance and related areas, e.g. energy markets, with an interest in industrial mathematics.

Numerical Methods and Optimization in Finance

Numerical Methods and Optimization in Finance

Author: Manfred Gilli

Publisher: Academic Press

ISBN: 9780128150658

Category:

Page: 638

View: 916

Computationally-intensive tools play an increasingly important role in financial decisions. Many financial problems-ranging from asset allocation to risk management and from option pricing to model calibration-can be efficiently handled using modern computational techniques. Numerical Methods and Optimization in Finance presents such computational techniques, with an emphasis on simulation and optimization, particularly so-called heuristics. This book treats quantitative analysis as an essentially computational discipline in which applications are put into software form and tested empirically. This revised edition includes two new chapters, a self-contained tutorial on implementing and using heuristics, and an explanation of software used for testing portfolio-selection models. Postgraduate students, researchers in programs on quantitative and computational finance, and practitioners in banks and other financial companies can benefit from this second edition of Numerical Methods and Optimization in Finance. Introduces numerical methods to readers with economics backgrounds Emphasizes core simulation and optimization problems Includes MATLAB and R code for all applications, with sample code in the text and freely available for download

A Workout in Computational Finance

A Workout in Computational Finance

Author: Andreas Binder

Publisher: John Wiley & Sons

ISBN: 9781119973492

Category: Business & Economics

Page: 336

View: 888

A comprehensive introduction to various numerical methods used in computational finance today Quantitative skills are a prerequisite for anyone working in finance or beginning a career in the field, as well as risk managers. A thorough grounding in numerical methods is necessary, as is the ability to assess their quality, advantages, and limitations. This book offers a thorough introduction to each method, revealing the numerical traps that practitioners frequently fall into. Each method is referenced with practical, real-world examples in the areas of valuation, risk analysis, and calibration of specific financial instruments and models. It features a strong emphasis on robust schemes for the numerical treatment of problems within computational finance. Methods covered include PDE/PIDE using finite differences or finite elements, fast and stable solvers for sparse grid systems, stabilization and regularization techniques for inverse problems resulting from the calibration of financial models to market data, Monte Carlo and Quasi Monte Carlo techniques for simulating high dimensional systems, and local and global optimization tools to solve the minimization problem.

Computational Finance

Computational Finance

Author: George Levy

Publisher: Butterworth-Heinemann

ISBN: 0750657227

Category: Business & Economics

Page: 474

View: 494

Accompanying CD-ROM contains ... "working computer code, demonstration applications, and also PDF versions of several research articles that are referred to in the book." -- d.j.

Handbook of Computational and Numerical Methods in Finance

Handbook of Computational and Numerical Methods in Finance

Author: Svetlozar T. Rachev

Publisher: Birkhäuser

ISBN: 1461264766

Category: Mathematics

Page: 435

View: 732

The subject of numerical methods in finance has recently emerged as a new discipline at the intersection of probability theory, finance, and numerical analysis. The methods employed bridge the gap between financial theory and computational practice, and provide solutions for complex problems that are difficult to solve by traditional analytical methods. Although numerical methods in finance have been studied intensively in recent years, many theoretical and practical financial aspects have yet to be explored. This volume presents current research and survey articles focusing on various numerical methods in finance. The book is designed for the academic community and will also serve professional investors.

Numerical Methods and Optimization in Finance

Numerical Methods and Optimization in Finance

Author: Manfred Gilli

Publisher: Academic Press

ISBN: 9780128150665

Category: Business & Economics

Page: 638

View: 348

Computationally-intensive tools play an increasingly important role in financial decisions. Many financial problems—ranging from asset allocation to risk management and from option pricing to model calibration—can be efficiently handled using modern computational techniques. Numerical Methods and Optimization in Finance presents such computational techniques, with an emphasis on simulation and optimization, particularly so-called heuristics. This book treats quantitative analysis as an essentially computational discipline in which applications are put into software form and tested empirically. This revised edition includes two new chapters, a self-contained tutorial on implementing and using heuristics, and an explanation of software used for testing portfolio-selection models. Postgraduate students, researchers in programs on quantitative and computational finance, and practitioners in banks and other financial companies can benefit from this second edition of Numerical Methods and Optimization in Finance. Introduces numerical methods to readers with economics backgrounds Emphasizes core simulation and optimization problems Includes MATLAB and R code for all applications, with sample code in the text and freely available for download

Numerical Methods in Finance and Economics

Numerical Methods in Finance and Economics

Author: Paolo Brandimarte

Publisher: John Wiley & Sons

ISBN: 9781118625576

Category: Mathematics

Page: 696

View: 723

A state-of-the-art introduction to the powerful mathematical and statistical tools used in the field of finance The use of mathematical models and numerical techniques is a practice employed by a growing number of applied mathematicians working on applications in finance. Reflecting this development, Numerical Methods in Finance and Economics: A MATLAB?-Based Introduction, Second Edition bridges the gap between financial theory and computational practice while showing readers how to utilize MATLAB?--the powerful numerical computing environment--for financial applications. The author provides an essential foundation in finance and numerical analysis in addition to background material for students from both engineering and economics perspectives. A wide range of topics is covered, including standard numerical analysis methods, Monte Carlo methods to simulate systems affected by significant uncertainty, and optimization methods to find an optimal set of decisions. Among this book's most outstanding features is the integration of MATLAB?, which helps students and practitioners solve relevant problems in finance, such as portfolio management and derivatives pricing. This tutorial is useful in connecting theory with practice in the application of classical numerical methods and advanced methods, while illustrating underlying algorithmic concepts in concrete terms. Newly featured in the Second Edition: * In-depth treatment of Monte Carlo methods with due attention paid to variance reduction strategies * New appendix on AMPL in order to better illustrate the optimization models in Chapters 11 and 12 * New chapter on binomial and trinomial lattices * Additional treatment of partial differential equations with two space dimensions * Expanded treatment within the chapter on financial theory to provide a more thorough background for engineers not familiar with finance * New coverage of advanced optimization methods and applications later in the text Numerical Methods in Finance and Economics: A MATLAB?-Based Introduction, Second Edition presents basic treatments and more specialized literature, and it also uses algebraic languages, such as AMPL, to connect the pencil-and-paper statement of an optimization model with its solution by a software library. Offering computational practice in both financial engineering and economics fields, this book equips practitioners with the necessary techniques to measure and manage risk.

Tools for Computational Finance

Tools for Computational Finance

Author: Rüdiger U. Seydel

Publisher: Springer Science & Business Media

ISBN: 9783662047118

Category: Mathematics

Page: 227

View: 938

Tools for Computational Finance offers a clear explanation of computational issues arising in financial mathematics. The new third edition is thoroughly revised and significantly extended, including an extensive new section on analytic methods, focused mainly on interpolation approach and quadratic approximation. Other new material is devoted to risk-neutrality, early-exercise curves, multidimensional Black-Scholes models, the integral representation of options and the derivation of the Black-Scholes equation. New figures, more exercises, and expanded background material make this guide a real must-to-have for everyone working in the world of financial engineering.

Numerical Methods in Finance

Numerical Methods in Finance

Author: René Carmona

Publisher: Springer Science & Business Media

ISBN: 9783642257469

Category: Mathematics

Page: 474

View: 801

Numerical methods in finance have emerged as a vital field at the crossroads of probability theory, finance and numerical analysis. Based on presentations given at the workshop Numerical Methods in Finance held at the INRIA Bordeaux (France) on June 1-2, 2010, this book provides an overview of the major new advances in the numerical treatment of instruments with American exercises. Naturally it covers the most recent research on the mathematical theory and the practical applications of optimal stopping problems as they relate to financial applications. By extension, it also provides an original treatment of Monte Carlo methods for the recursive computation of conditional expectations and solutions of BSDEs and generalized multiple optimal stopping problems and their applications to the valuation of energy derivatives and assets. The articles were carefully written in a pedagogical style and a reasonably self-contained manner. The book is geared toward quantitative analysts, probabilists, and applied mathematicians interested in financial applications.