Numerical Methods for Differential Equations

Numerical Methods for Differential Equations

Author: J.R. Dormand

Publisher: CRC Press

ISBN: 0849394333

Category: Mathematics

Page: 390

View: 417

With emphasis on modern techniques, Numerical Methods for Differential Equations: A Computational Approach covers the development and application of methods for the numerical solution of ordinary differential equations. Some of the methods are extended to cover partial differential equations. All techniques covered in the text are on a program disk included with the book, and are written in Fortran 90. These programs are ideal for students, researchers, and practitioners because they allow for straightforward application of the numerical methods described in the text. The code is easily modified to solve new systems of equations. Numerical Methods for Differential Equations: A Computational Approach also contains a reliable and inexpensive global error code for those interested in global error estimation. This is a valuable text for students, who will find the derivations of the numerical methods extremely helpful and the programs themselves easy to use. It is also an excellent reference and source of software for researchers and practitioners who need computer solutions to differential equations.

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations

Author: L.F. Shampine

Publisher: Routledge

ISBN: 9781351427555

Category: Mathematics

Page: 632

View: 131

This new work is an introduction to the numerical solution of the initial value problem for a system of ordinary differential equations. The first three chapters are general in nature, and chapters 4 through 8 derive the basic numerical methods, prove their convergence, study their stability and consider how to implement them effectively. The book focuses on the most important methods in practice and develops them fully, uses examples throughout, and emphasizes practical problem-solving methods.

A First Course in the Numerical Analysis of Differential Equations

A First Course in the Numerical Analysis of Differential Equations

Author: A. Iserles

Publisher: Cambridge University Press

ISBN: 9780521734905

Category: Mathematics

Page: 481

View: 789

lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.

Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations

Author: J. C. Butcher

Publisher: John Wiley & Sons

ISBN: 9781119121503

Category: Mathematics

Page: 546

View: 623

A new edition of this classic work, comprehensively revised to present exciting new developments in this important subject The study of numerical methods for solving ordinary differential equations is constantly developing and regenerating, and this third edition of a popular classic volume, written by one of the world’s leading experts in the field, presents an account of the subject which reflects both its historical and well-established place in computational science and its vital role as a cornerstone of modern applied mathematics. In addition to serving as a broad and comprehensive study of numerical methods for initial value problems, this book contains a special emphasis on Runge-Kutta methods by the mathematician who transformed the subject into its modern form dating from his classic 1963 and 1972 papers. A second feature is general linear methods which have now matured and grown from being a framework for a unified theory of a wide range of diverse numerical schemes to a source of new and practical algorithms in their own right. As the founder of general linear method research, John Butcher has been a leading contributor to its development; his special role is reflected in the text. The book is written in the lucid style characteristic of the author, and combines enlightening explanations with rigorous and precise analysis. In addition to these anticipated features, the book breaks new ground by including the latest results on the highly efficient G-symplectic methods which compete strongly with the well-known symplectic Runge-Kutta methods for long-term integration of conservative mechanical systems. This third edition of Numerical Methods for Ordinary Differential Equations will serve as a key text for senior undergraduate and graduate courses in numerical analysis, and is an essential resource for research workers in applied mathematics, physics and engineering.

Numerical Solution of Stochastic Differential Equations

Numerical Solution of Stochastic Differential Equations

Author: Peter E. Kloeden

Publisher: Springer Science & Business Media

ISBN: 3540540628

Category: Mathematics

Page: 680

View: 404

The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP

Numerical Solution of Partial Differential Equations

Numerical Solution of Partial Differential Equations

Author: Gordon D. Smith

Publisher: Oxford University Press

ISBN: 0198596502

Category: Mathematics

Page: 356

View: 486

Substantially revised, this authoritative study covers the standard finite difference methods of parabolic, hyperbolic, and elliptic equations, and includes the concomitant theoretical work on consistency, stability, and convergence. The new edition includes revised and greatly expanded sections on stability based on the Lax-Richtmeyer definition, the application of Pade approximants to systems of ordinary differential equations for parabolic and hyperbolic equations, and a considerably improved presentation of iterative methods. A fast-paced introduction to numerical methods, this will be a useful volume for students of mathematics and engineering, and for postgraduates and professionals who need a clear, concise grounding in this discipline.

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations

Author: Kendall Atkinson

Publisher: John Wiley & Sons

ISBN: 9781118164525

Category: Mathematics

Page: 272

View: 789

A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.

Numerical Solution of Differential Equations

Numerical Solution of Differential Equations

Author: Isaac Fried

Publisher: Academic Press

ISBN: 9781483262529

Category: Mathematics

Page: 278

View: 362

Numerical Solution of Differential Equations is a 10-chapter text that provides the numerical solution and practical aspects of differential equations. After a brief overview of the fundamentals of differential equations, this book goes on presenting the principal useful discretization techniques and their theoretical aspects, along with geometrical and physical examples, mainly from continuum mechanics. Considerable chapters are devoted to the development of the techniques of the numerical solution of differential equations and their analysis. The remaining chapters explore the influential invention in computational mechanics-finite elements. Each chapter emphasizes the relationship among the analytic formulation of the physical event, the discretization techniques applied to it, the algebraic properties of the discrete systems created, and the properties of the digital computer. This book will be of great value to undergraduate and graduate mathematics and physics students.

Numerical Solution of Partial Differential Equations in Science and Engineering

Numerical Solution of Partial Differential Equations in Science and Engineering

Author: Leon Lapidus

Publisher: John Wiley & Sons

ISBN: 9781118031216

Category: Mathematics

Page: 677

View: 222

From the reviews of Numerical Solution of PartialDifferential Equations in Science and Engineering: "The book by Lapidus and Pinder is a very comprehensive, evenexhaustive, survey of the subject . . . [It] is unique in that itcovers equally finite difference and finite element methods." Burrelle's "The authors have selected an elementary (but not simplistic)mode of presentation. Many different computational schemes aredescribed in great detail . . . Numerous practical examples andapplications are described from beginning to the end, often withcalculated results given." Mathematics of Computing "This volume . . . devotes its considerable number of pages tolucid developments of the methods [for solving partial differentialequations] . . . the writing is very polished and I found it apleasure to read!" Mathematics of Computation Of related interest . . . NUMERICAL ANALYSIS FOR APPLIED SCIENCE Myron B. Allen andEli L. Isaacson. A modern, practical look at numerical analysis,this book guides readers through a broad selection of numericalmethods, implementation, and basic theoretical results, with anemphasis on methods used in scientific computation involvingdifferential equations. 1997 (0-471-55266-6) 512 pp. APPLIED MATHEMATICS Second Edition, J. David Logan.Presenting an easily accessible treatment of mathematical methodsfor scientists and engineers, this acclaimed work covers fluidmechanics and calculus of variations as well as more modernmethods-dimensional analysis and scaling, nonlinear wavepropagation, bifurcation, and singular perturbation. 1996(0-471-16513-1) 496 pp.

Numerical Methods for Partial Differential Equations

Numerical Methods for Partial Differential Equations

Author: G. Evans

Publisher: Springer

ISBN: STANFORD:36105028515737

Category: Mathematics

Page: 290

View: 884

The subject of partial differential equations holds an exciting place in mathematics. Inevitably, the subject falls into several areas of mathematics. At one extreme the interest lies in the existence and uniqueness of solutions, and the functional analysis of the proofs of these properties. At the other extreme lies the applied mathematical and engineering quest to find useful solutions, either analytically or numerically, to these important equations which can be used in design and construction. The book presents a clear introduction of the methods and underlying theory used in the numerical solution of partial differential equations. After revising the mathematical preliminaries, the book covers the finite difference method of parabolic or heat equations, hyperbolic or wave equations and elliptic or Laplace equations. Throughout, the emphasis is on the practical solution rather than the theoretical background, without sacrificing rigour.

Partial Differential Equations with Numerical Methods

Partial Differential Equations with Numerical Methods

Author: Stig Larsson

Publisher: Springer Science & Business Media

ISBN: 9783540887058

Category: Mathematics

Page: 263

View: 367

The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.

Numerical Methods for Elliptic and Parabolic Partial Differential Equations

Numerical Methods for Elliptic and Parabolic Partial Differential Equations

Author: Peter Knabner

Publisher: Springer Science & Business Media

ISBN: 9780387954493

Category: Mathematics

Page: 437

View: 617

This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.