In this carefully researched study, the author examines Egyptian mathematics, demonstrating that although operations were limited in number, they were remarkably adaptable to a great many applications: solution of problems in direct and inverse proportion, linear equations of the first degree, and arithmetical and geometrical progressions.
Presents the emerging field of ethnomathematics from a critical perspective, challenging particular ways in which Eurocentrism permeates mathematics education and mathematics in general.
'What is the basic building block of the universe?' Thales of Miletus was the first to ask this fundamental, yet to be answered, question in the sixth century B.C. This book offers an in-depth account of the answers he gave and of his adventure into many areas of learning: philosophy, science, mathematics and astronomy. Thales proved that the events of nature were comprehensible to man and could be explained without the intervention of mythological beings. Henceforth they became subject to investigation, experiment, questioning and discussion. Presenting for the first time in the English language a comprehensive study of Thales of Miletus, Patricia O'Grady brings Thales out of pre-Socratic shadows into historical illumination and explores why this historical figure has proved to be of lasting significance.
This comprehensive text on African Mathematics addresses some of the problematic issues in the field, such as attitudes, curriculum development, educational change, academic achievement, standardized and other tests, performance factors, student characteristics, cross-cultural differences and studies, literacy, native speakers, social class and differences, equal education, teaching methods, and more.
A survey of ancient Egyptian mathematics across three thousand years Mathematics in Ancient Egypt traces the development of Egyptian mathematics, from the end of the fourth millennium BC—and the earliest hints of writing and number notation—to the end of the pharaonic period in Greco-Roman times. Drawing from mathematical texts, architectural drawings, administrative documents, and other sources, Annette Imhausen surveys three thousand years of Egyptian history to present an integrated picture of theoretical mathematics in relation to the daily practices of Egyptian life and social structures. Imhausen shows that from the earliest beginnings, pharaonic civilization used numerical techniques to efficiently control and use their material resources and labor. Even during the Old Kingdom, a variety of metrological systems had already been devised. By the Middle Kingdom, procedures had been established to teach mathematical techniques to scribes in order to make them proficient administrators for their king. Imhausen looks at counterparts to the notation of zero, suggests an explanation for the evolution of unit fractions, and analyzes concepts of arithmetic techniques. She draws connections and comparisons to Mesopotamian mathematics, examines which individuals in Egyptian society held mathematical knowledge, and considers which scribes were trained in mathematical ideas and why. Of interest to historians of mathematics, mathematicians, Egyptologists, and all those curious about Egyptian culture, Mathematics in Ancient Egypt sheds new light on a civilization's unique mathematical evolution.
This handbook explores the history of mathematics, addressing what mathematics has been and what it has meant to practise it. 36 self-contained chapters provide a fascinating overview of 5000 years of mathematics and its key cultures for academics in mathematics, historians of science, and general historians.
This volume brings together recent research and commentary in secondary school mathematics from a breadth of contemporary Canadian and International researchers and educators. It is both representative of mathematics education generally, as well as unique to the particular geography and culture of Canada. The chapters address topics of broad applicability such as technology in learning mathematics, recent interest in social justice contexts in the learning of mathematics, as well as Indigenous education. The voices of classroom practitioners, the group ultimately responsible for implementing this new vision of mathematics teaching and learning, are not forgotten. Each section includes a chapter written by a classroom teacher, making this volume unique in its approach. We have much to learn from one another, and this volume takes the stance that the development of a united vision, supported by both research and professional dialog, provides the first step.
This reference serves as a reader-friendly guide to every basic tool and skill required in the mathematical library and helps mathematicians find resources in any format in the mathematics literature. It lists a wide range of standard texts, journals, review articles, newsgroups, and Internet and database tools for every major subfield in mathematics and details methods of access to primary literature sources of new research, applications, results, and techniques. Using the Mathematics Literature is the most comprehensive and up-to-date resource on mathematics literature in both print and electronic formats, presenting time-saving strategies for retrieval of the latest information.
Representing the perspectives of educators in both the science and mathematics communities, this publication is intended to serve as a resource for teachers of students in kindergarten through grade 12 in choosing science- and mathematics-related literature for their schools and classrooms. It contains over 1,000 annotated entries on the physical sciences, earth sciences, life sciences, and mathematics. Formatted for easy use, each entry provides information on the author, publisher and publication date, type of literature, subject emphasis, suggested grade span, and illustrations.