This book constitutes the refereed proceedings of the 15th China Conference on Machine Translation, CCMT 2019, held in Nanchang, China, in September 2019. The 10 full papers presented in this volume were carefully reviewed and selected from 21 submissions and focus on all aspects of machine translation, including preprocessing, neural machine translation models, hybrid model, evaluation method, and post-editing.
This book constitutes the refereed proceedings of the 17th China Conference on Machine Translation, CCMT 2020, held in Xining, China, in October 2021. The 10 papers presented in this volume were carefully reviewed and selected from 25 submissions and focus on all aspects of machine translation, including preprocessing, neural machine translation models, hybrid model, evaluation method, and post-editing.
The dream of automatic language translation is now closer thanks to recent advances in the techniques that underpin statistical machine translation. This class-tested textbook from an active researcher in the field, provides a clear and careful introduction to the latest methods and explains how to build machine translation systems for any two languages. It introduces the subject's building blocks from linguistics and probability, then covers the major models for machine translation: word-based, phrase-based, and tree-based, as well as machine translation evaluation, language modeling, discriminative training and advanced methods to integrate linguistic annotation. The book also reports the latest research, presents the major outstanding challenges, and enables novices as well as experienced researchers to make novel contributions to this exciting area. Ideal for students at undergraduate and graduate level, or for anyone interested in the latest developments in machine translation.
Lynne Bowker and Jairo Buitrago Ciro introduce the concept of machine translation literacy, a new kind of literacy for scholars and librarians in the digital age. This book is a must-read for researchers and information professionals eager to maximize the global reach and impact of any form of scholarly work.
Machine translation has become increasingly popular, especially with the introduction of neural machine translation in major online translation systems. However, despite the rapid advances in machine translation, the role of a human translator remains crucial. As illustrated by the chapters in this book, man-machine interaction is essential in machine translation, localisation, terminology management, and crowdsourcing translation. In fact, the importance of a human translator before, during, and after machine processing, cannot be overemphasised as human intervention is the best way to ensure the translation quality of machine translation. This volume explores the role of a human translator in machine translation from various perspectives, affording a comprehensive look at this topical research area. This book is essential reading for anyone involved in translation studies, machine translation or interested in translation technology.
The field of machine translation (MT) - the automation of translation between human languages - has existed for more than 50 years. MT helped to usher in the field of computational linguistics and has influenced methods and applications in knowledge representation, information theory, and mathematical statistics.
This book is the first volume that focuses on the specific challenges of machine translation with Arabic either as source or target language. It nicely fills a gap in the literature by covering approaches that belong to the three major paradigms of machine translation: Example-based, statistical and knowledge-based. It provides broad but rigorous coverage of the methods for incorporating linguistic knowledge into empirical MT. The book brings together original and extended contributions from a group of distinguished researchers from both academia and industry. It is a welcome and much-needed repository of important aspects in Arabic Machine Translation such as morphological analysis and syntactic reordering, both central to reducing the distance between Arabic and other languages. Most of the proposed techniques are also applicable to machine translation of Semitic languages other than Arabic, as well as translation of other languages with a complex morphology.
Post-editing is possibly the oldest form of human-machine cooperation for translation. It has been a common practice for just about as long as operational machine translation systems have existed. Recently, however, there has been a surge of interest in post-editing among the wider user community, partly due to the increasing quality of machine translation output, but also to the availability of free, reliable software for both machine translation and post-editing. As a result, the practices and processes of the translation industry are changing in fundamental ways. This volume is a compilation of work by researchers, developers and practitioners of post-editing, presented at two recent events on post-editing: The first Workshop on Post-editing Technology and Practice, held in conjunction with the 10th Conference of the Association for Machine Translation in the Americas, held in San Diego, in 2012; and the International Workshop on Expertise in Translation and Post-editing Research and Application, held at the Copenhagen Business School, in 2012.
Author: Association for Machine Translation in the Americas Conference 2002
Publisher: Springer Science & Business Media
ISBN: 9783540442820
Category: Computers
Page: 275
View: 930
This book constitutes the refereed proceedings of the 5th Conference of the Association for Machine Translation in the Americas, AMTA 2002, held in Tiburon, CA, USA, in October 2002. The 18 revised full technical papers, 3 user studies, and 9 system descriptions presented were carefully reviewed and selected for inclusion in the book. Among the issues addressed are hybrid translation environments, resource-limited MT, statistical word-level alignment, word formation rules, rule learning, web-based MT, translation divergences, example-based MT, data-driven MT, classification, contextual translation, the lexicon building process, commercial MT systems, speeck-to-speech translation, and language checking systems.