Handbook of Nanophysics

Handbook of Nanophysics

Author: Klaus D. Sattler

Publisher: CRC Press

ISBN: 1420075411

Category: Science

Page: 827

View: 569

Covering the key theories, tools, and techniques of this dynamic field, Handbook of Nanophysics: Principles and Methods elucidates the general theoretical principles and measurements of nanoscale systems. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume explores the theories involved in nanoscience. It also discusses the properties of nanomaterials and nanosystems, including superconductivity, thermodynamics, nanomechanics, and nanomagnetism. In addition, leading experts describe basic processes and methods, such as atomic force microscopy, STM-based techniques, photopolymerization, photoisomerization, soft x-ray holography, and molecular imaging. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.

Handbook of Nanophysics

Handbook of Nanophysics

Author: Klaus D. Sattler

Publisher: CRC Press

ISBN: 1420075535

Category: Science

Page: 787

View: 275

Handbook of Nanophysics: Functional Nanomaterials illustrates the importance of tailoring nanomaterials to achieve desired functions in applications. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume covers various composites, including carbon nanotube/polymer composites, printable metal nanoparticle inks, polymer–clay nanocomposites, biofunctionalized titanium dioxide-based nanocomposites, nanocolorants, ferroic nanocomposites, and smart composite systems. It also describes nanoporous materials, a giant nanomembrane, graphitic foams, arrayed nanoporous silicon pillars, nanoporous anodic oxides, metal oxide nanohole arrays, carbon clathrates, self-assembled monolayers, epitaxial graphene, and graphene nanoribbons, nanostructures, quantum dots, and cones. After focusing on the methods of nanoindentation and self-patterning, the book discusses nanosensors, nano-oscillators, and hydrogen storage. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.

Handbook of Nanophysics

Handbook of Nanophysics

Author: Klaus D. Sattler

Publisher: CRC Press

ISBN: 1420075438

Category: Science

Page: 784

View: 721

Intensive research on fullerenes, nanoparticles, and quantum dots in the 1990s led to interest in nanotubes and nanowires in subsequent years. Handbook of Nanophysics: Nanotubes and Nanowires focuses on the fundamental physics and latest applications of these important nanoscale materials and structures. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume first covers key aspects of carbon nanotubes, including quantum and electron transport, isotope engineering, and fluid flow, before exploring inorganic nanotubes, such as spinel oxide nanotubes, magnetic nanotubes, and self-assembled peptide nanostructures. It then focuses on germanium, gallium nitride, gold, polymer, and organic nanowires and their properties. The book also discusses nanowire arrays, nanorods, atomic wires, monatomic chains, ultrathin gold nanowires, and several nanorings, including superconducting, ferromagnetic, and quantum dot nanorings. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.

Handbook of Nanophysics

Handbook of Nanophysics

Author: Klaus D. Sattler

Publisher: CRC Press

ISBN: 113811510X

Category:

Page: 912

View: 523

The field of nanoscience was pioneered in the 1980s with the groundbreaking research on clusters, which later led to the discovery of fullerenes. Handbook of Nanophysics: Clusters and Fullerenes focuses on the fundamental physics of these nanoscale materials and structures. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume covers free clusters, including hydrogen, bimetallic, silicon, metal, and atomic clusters, as well as the cluster interactions. The expert contributors examine how carbon fullerenes are produced and how to characterize their stability. They discuss the structure, properties, and behavior of carbon fullerenes, including the smallest possible fullerene: C20. The book also looks at inorganic fullerenes, such as boron fullerenes, silicon fullerenes, nanocones, and onion-like inorganic fullerenes. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.

Handbook of Nanophysics

Handbook of Nanophysics

Author: Klaus D. Sattler

Publisher: CRC Press

ISBN: 0367383624

Category:

Page: 887

View: 828

This volume presents an up-to-date overview of the application of nanotechnology to molecular and biological processes, medical imaging, targeted drug delivery, and cancer treatment. Each peer-reviewed chapter contains a broad-based introduction and enhances the state-of-the-art scientific content through fundamental equations and illustrations, some in color. The book examines the impact and risks of nanomaterials on human health and the environment. Researchers at the forefront of the field cover tissue engineering, diagnostic, drug delivery, and therapeutic applications. They also investigate the next generation of nanotechnology research that is focused on nanorobotics and its potential in detecting and destroying cancer cells and detecting and measuring toxic chemicals.

Handbook of Nanophysics

Handbook of Nanophysics

Author: Klaus D. Sattler

Publisher: CRC Press

ISBN: 1420075454

Category: Science

Page: 716

View: 584

In the 1990s, nanoparticles and quantum dots began to be used in optical, electronic, and biological applications. Now they are being studied for use in solid-state quantum computation, tumor imaging, and photovoltaics. Handbook of Nanophysics: Nanoparticles and Quantum Dots focuses on the fundamental physics of these nanoscale materials and structures. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume provides an overview of the major categories of nanoparticles, including amorphous, magnetic, ferroelectric, and zinc oxide nanoparticles; helium nanodroplets; and silicon, tetrapod-shaped semiconductor, magnetic ion-doped semiconductor, and natural polysaccharide nanocrystals. It also describes their properties and interactions. In the group of chapters on nanofluids, the expert contributors discuss the stability of nanodispersions, liquid slip at the molecular scale, thermophysical properties, and heat transfer. They go on to examine the theory, self-assembly, and teleportation of quantum dots. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.

Handbook of Nanophysics

Handbook of Nanophysics

Author: Klaus D. Sattler

Publisher: CRC Press

ISBN: 0367570122

Category: Nanostructures

Page: 0

View: 294

Breakthroughs in nanotechnology require a firm grounding in the principles of nanophysics. Providing the framework to achieve these advances, Handbook of Nanophysics is the first comprehensive reference to cover both fundamental and applied aspects of physics at the nanoscale. Pioneering scientists from preeminent academic institutions, R&D companies, and research laboratories pave the way for new innovations in nanotechnology. Explore the frontiers of nanoscience This seven-volume set offers a sound introduction to established fundamentals in the field as well as a summary of the most significant developments in research. After discussing the theoretical principles and measurements of nanoscale systems, the organization of the set generally follows the historical development of nanoscience. Each peer-reviewed chapter presents a didactic treatment of the physics underlying the nanoscale materials and applications along with detailed experimental results. State-of-the-art scientific content is enriched with fundamental equations and illustrations, some in color. State-of-the-art research collected in one source Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work. Two of the contributors, as well as the editor of this work, are faculty members at the University of Hawaii, which cited the Handbook in a recent article.

Handbook of Nanophysics

Handbook of Nanophysics

Author: Klaus D. Sattler

Publisher:

ISBN: 0429193076

Category: TECHNOLOGY & ENGINEERING

Page: 5670

View: 710

Breakthroughs in nanotechnology require a firm grounding in the principles of nanophysics. Providing the framework to achieve these advances, Handbook of Nanophysics is the first comprehensive reference to cover both fundamental and applied aspects of physics at the nanoscale. Pioneering scientists from preeminent academic institutions, R&D companies, and research laboratories pave the way for new innovations in nanotechnology.Explore the frontiers of nanoscienceThis seven-volume set offers a sound introduction to established fundamentals in the field as well as a summary of the most significant developments in research. After discussing the theoretical principles and measurements of nanoscale systems, the organization of the set generally follows the historical development of nanoscience. Each peer-reviewed chapter presents a didactic treatment of the physics underlying the nanoscale materials and applications along with detailed experimental results. State-of-the-art scientific content is enriched with fundamental equations and illustrations, some in color. State-of-the-art research collected in one sourceNanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.Two of the contributors, as well as the editor of this work, are faculty members at the University of Hawaii, which cited the Handbook in a recent a href="http://www.hawaii.edu/news/article.php?aId=4080" target="_blank"article.

Handbook of Nanoscience, Engineering, and Technology

Handbook of Nanoscience, Engineering, and Technology

Author: William A. Goddard III

Publisher: CRC Press

ISBN: 9781439860168

Category: Technology & Engineering

Page: 1093

View: 732

In his 1959 address, "There is Plenty of Room at the Bottom," Richard P. Feynman speculated about manipulating materials atom by atom and challenged the technical community "to find ways of manipulating and controlling things on a small scale." This visionary challenge has now become a reality, with recent advances enabling atomistic-level tailoring and control of materials. Exemplifying Feynman’s vision, Handbook of Nanoscience, Engineering, and Technology, Third Edition continues to explore innovative nanoscience, engineering, and technology areas. Along with updating all chapters, this third edition extends the coverage of emerging nano areas even further. Two entirely new sections on energy and biology cover nanomaterials for energy storage devices, photovoltaics, DNA devices and assembly, digital microfluidic lab-on-a-chip, and much more. This edition also includes new chapters on nanomagnet logic, quantum transport at the nanoscale, terahertz emission from Bloch oscillator systems, molecular logic, electronic optics in graphene, and electromagnetic metamaterials. With contributions from top scientists and researchers from around the globe, this color handbook presents a unified, up-to-date account of the most promising technologies and developments in the nano field. It sets the stage for the next revolution of nanoscale manufacturing—where scalable technologies are used to manufacture large numbers of devices with complex functionalities.

Springer Handbook of Nanotechnology

Springer Handbook of Nanotechnology

Author: Bharat Bhushan

Publisher: Springer

ISBN: 9783662543573

Category: Technology & Engineering

Page: 1500

View: 348

This comprehensive handbook has become the definitive reference work in the field of nanoscience and nanotechnology, and this 4th edition incorporates a number of recent new developments. It integrates nanofabrication, nanomaterials, nanodevices, nanomechanics, nanotribology, materials science, and reliability engineering knowledge in just one volume. Furthermore, it discusses various nanostructures; micro/nanofabrication; micro/nanodevices and biomicro/nanodevices, as well as scanning probe microscopy; nanotribology and nanomechanics; molecularly thick films; industrial applications and nanodevice reliability; societal, environmental, health and safety issues; and nanotechnology education. In this new edition, written by an international team of over 140 distinguished experts and put together by an experienced editor with a comprehensive understanding of the field, almost all the chapters are either new or substantially revised and expanded, with new topics of interest added. It is an essential resource for anyone working in the rapidly evolving field of key technology, including mechanical and electrical engineers, materials scientists, physicists, and chemists.

21st Century Nanoscience

21st Century Nanoscience

Author: Klaus D. Sattler

Publisher: CRC Press

ISBN: 9781351260558

Category: Science

Page: 4142

View: 600

This 21st Century Nanoscience Handbook will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics, by the same editor, published in the fall of 2010, was embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanoscience extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.