Big Data Analysis with Python

Big Data Analysis with Python

Author: Ivan Marin

Publisher: Packt Publishing Ltd

ISBN: 9781789950731

Category: Computers

Page: 276

View: 995

Get to grips with processing large volumes of data and presenting it as engaging, interactive insights using Spark and Python. Key FeaturesGet a hands-on, fast-paced introduction to the Python data science stackExplore ways to create useful metrics and statistics from large datasetsCreate detailed analysis reports with real-world dataBook Description Processing big data in real time is challenging due to scalability, information inconsistency, and fault tolerance. Big Data Analysis with Python teaches you how to use tools that can control this data avalanche for you. With this book, you'll learn practical techniques to aggregate data into useful dimensions for posterior analysis, extract statistical measurements, and transform datasets into features for other systems. The book begins with an introduction to data manipulation in Python using pandas. You'll then get familiar with statistical analysis and plotting techniques. With multiple hands-on activities in store, you'll be able to analyze data that is distributed on several computers by using Dask. As you progress, you'll study how to aggregate data for plots when the entire data cannot be accommodated in memory. You'll also explore Hadoop (HDFS and YARN), which will help you tackle larger datasets. The book also covers Spark and explains how it interacts with other tools. By the end of this book, you'll be able to bootstrap your own Python environment, process large files, and manipulate data to generate statistics, metrics, and graphs. What you will learnUse Python to read and transform data into different formatsGenerate basic statistics and metrics using data on diskWork with computing tasks distributed over a clusterConvert data from various sources into storage or querying formatsPrepare data for statistical analysis, visualization, and machine learningPresent data in the form of effective visualsWho this book is for Big Data Analysis with Python is designed for Python developers, data analysts, and data scientists who want to get hands-on with methods to control data and transform it into impactful insights. Basic knowledge of statistical measurements and relational databases will help you to understand various concepts explained in this book.

Big Data Analysis with Python

Big Data Analysis with Python

Author: AMC College

Publisher: Advanced Micro Systems Sdn Bhd

ISBN:

Category: Computers

Page: 61

View: 194

Big Data Analysis with Python teaches you how to use tools that can control this data avalanche for you. With this book, you'll learn practical techniques to aggregate data into useful dimensions for posterior analysis, extract statistical measurements, and transform datasets into features for other systems.

Data Analysis with Python

Data Analysis with Python

Author: David Taieb

Publisher: Packt Publishing Ltd

ISBN: 9781789958195

Category: Computers

Page: 490

View: 183

Learn a modern approach to data analysis using Python to harness the power of programming and AI across your data. Detailed case studies bring this modern approach to life across visual data, social media, graph algorithms, and time series analysis. Key FeaturesBridge your data analysis with the power of programming, complex algorithms, and AIUse Python and its extensive libraries to power your way to new levels of data insightWork with AI algorithms, TensorFlow, graph algorithms, NLP, and financial time seriesExplore this modern approach across with key industry case studies and hands-on projectsBook Description Data Analysis with Python offers a modern approach to data analysis so that you can work with the latest and most powerful Python tools, AI techniques, and open source libraries. Industry expert David Taieb shows you how to bridge data science with the power of programming and algorithms in Python. You'll be working with complex algorithms, and cutting-edge AI in your data analysis. Learn how to analyze data with hands-on examples using Python-based tools and Jupyter Notebook. You'll find the right balance of theory and practice, with extensive code files that you can integrate right into your own data projects. Explore the power of this approach to data analysis by then working with it across key industry case studies. Four fascinating and full projects connect you to the most critical data analysis challenges you’re likely to meet in today. The first of these is an image recognition application with TensorFlow – embracing the importance today of AI in your data analysis. The second industry project analyses social media trends, exploring big data issues and AI approaches to natural language processing. The third case study is a financial portfolio analysis application that engages you with time series analysis - pivotal to many data science applications today. The fourth industry use case dives you into graph algorithms and the power of programming in modern data science. You'll wrap up with a thoughtful look at the future of data science and how it will harness the power of algorithms and artificial intelligence. What you will learnA new toolset that has been carefully crafted to meet for your data analysis challengesFull and detailed case studies of the toolset across several of today’s key industry contextsBecome super productive with a new toolset across Python and Jupyter NotebookLook into the future of data science and which directions to develop your skills nextWho this book is for This book is for developers wanting to bridge the gap between them and data scientists. Introducing PixieDust from its creator, the book is a great desk companion for the accomplished Data Scientist. Some fluency in data interpretation and visualization is assumed. It will be helpful to have some knowledge of Python, using Python libraries, and some proficiency in web development.

Big Data Analytics with Hadoop 3

Big Data Analytics with Hadoop 3

Author: Sridhar Alla

Publisher: Packt Publishing Ltd

ISBN: 9781788624954

Category: Computers

Page: 482

View: 646

Explore big data concepts, platforms, analytics, and their applications using the power of Hadoop 3 Key Features Learn Hadoop 3 to build effective big data analytics solutions on-premise and on cloud Integrate Hadoop with other big data tools such as R, Python, Apache Spark, and Apache Flink Exploit big data using Hadoop 3 with real-world examples Book Description Apache Hadoop is the most popular platform for big data processing, and can be combined with a host of other big data tools to build powerful analytics solutions. Big Data Analytics with Hadoop 3 shows you how to do just that, by providing insights into the software as well as its benefits with the help of practical examples. Once you have taken a tour of Hadoop 3’s latest features, you will get an overview of HDFS, MapReduce, and YARN, and how they enable faster, more efficient big data processing. You will then move on to learning how to integrate Hadoop with the open source tools, such as Python and R, to analyze and visualize data and perform statistical computing on big data. As you get acquainted with all this, you will explore how to use Hadoop 3 with Apache Spark and Apache Flink for real-time data analytics and stream processing. In addition to this, you will understand how to use Hadoop to build analytics solutions on the cloud and an end-to-end pipeline to perform big data analysis using practical use cases. By the end of this book, you will be well-versed with the analytical capabilities of the Hadoop ecosystem. You will be able to build powerful solutions to perform big data analytics and get insight effortlessly. What you will learn Explore the new features of Hadoop 3 along with HDFS, YARN, and MapReduce Get well-versed with the analytical capabilities of Hadoop ecosystem using practical examples Integrate Hadoop with R and Python for more efficient big data processing Learn to use Hadoop with Apache Spark and Apache Flink for real-time data analytics Set up a Hadoop cluster on AWS cloud Perform big data analytics on AWS using Elastic Map Reduce Who this book is for Big Data Analytics with Hadoop 3 is for you if you are looking to build high-performance analytics solutions for your enterprise or business using Hadoop 3’s powerful features, or you’re new to big data analytics. A basic understanding of the Java programming language is required.

Big Data Analysis for Bioinformatics and Biomedical Discoveries

Big Data Analysis for Bioinformatics and Biomedical Discoveries

Author: Shui Qing Ye

Publisher: CRC Press

ISBN: 9781498724548

Category: Mathematics

Page: 274

View: 389

Demystifies Biomedical and Biological Big Data Analyses Big Data Analysis for Bioinformatics and Biomedical Discoveries provides a practical guide to the nuts and bolts of Big Data, enabling you to quickly and effectively harness the power of Big Data to make groundbreaking biological discoveries, carry out translational medical research, and implement personalized genomic medicine. Contributing to the NIH Big Data to Knowledge (BD2K) initiative, the book enhances your computational and quantitative skills so that you can exploit the Big Data being generated in the current omics era. The book explores many significant topics of Big Data analyses in an easily understandable format. It describes popular tools and software for Big Data analyses and explains next-generation DNA sequencing data analyses. It also discusses comprehensive Big Data analyses of several major areas, including the integration of omics data, pharmacogenomics, electronic health record data, and drug discovery. Accessible to biologists, biomedical scientists, bioinformaticians, and computer data analysts, the book keeps complex mathematical deductions and jargon to a minimum. Each chapter includes a theoretical introduction, example applications, data analysis principles, step-by-step tutorials, and authoritative references.

Advanced Data Analytics Using Python

Advanced Data Analytics Using Python

Author: Sayan Mukhopadhyay

Publisher: Apress

ISBN: 9781484234501

Category: Computers

Page: 195

View: 991

Gain a broad foundation of advanced data analytics concepts and discover the recent revolution in databases such as Neo4j, Elasticsearch, and MongoDB. This book discusses how to implement ETL techniques including topical crawling, which is applied in domains such as high-frequency algorithmic trading and goal-oriented dialog systems. You’ll also see examples of machine learning concepts such as semi-supervised learning, deep learning, and NLP. Advanced Data Analytics Using Python also covers important traditional data analysis techniques such as time series and principal component analysis. After reading this book you will have experience of every technical aspect of an analytics project. You’ll get to know the concepts using Python code, giving you samples to use in your own projects. What You Will Learn Work with data analysis techniques such as classification, clustering, regression, and forecasting Handle structured and unstructured data, ETL techniques, and different kinds of databases such as Neo4j, Elasticsearch, MongoDB, and MySQL Examine the different big data frameworks, including Hadoop and Spark Discover advanced machine learning concepts such as semi-supervised learning, deep learning, and NLP Who This Book Is For Data scientists and software developers interested in the field of data analytics.

Statistik-Workshop für Programmierer : [Einführung in Wahrscheinlichkeit und Statistik ; Statistik verstehen mit Python]

Statistik-Workshop für Programmierer : [Einführung in Wahrscheinlichkeit und Statistik ; Statistik verstehen mit Python]

Author: Allen Downey

Publisher: O'Reilly Germany

ISBN: 9783868993424

Category: Statistics

Page: 154

View: 934

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt Datenanalysen mit Python durchführen können. Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für Wahrscheinlichkeitsrechnung und Statistik: Das Buch führt Sie durch eine vollständige Datenanalyse anhand eines durchgängigen Fallbeispiels -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht.

BIG DATA ANALYTICS IN COMPUTATIONAL GENOME SEQUENCE ANALYSIS

BIG DATA ANALYTICS IN COMPUTATIONAL GENOME SEQUENCE ANALYSIS

Author: Dr. F. Amul Mary & Dr. S. Jyothi

Publisher: Ashok Yakkaldevi

ISBN: 9781716024481

Category: Art

Page: 180

View: 298

The genomes in human body programs the blueprint of one’s life but the functions of those genomes nearly three billion genome bases are not known. The genome sequence in human being gives the fundamental rules for human biology. Science makes every effort to reveal the laws of nature and critical understanding of the biology. Scientists in the life-science field are seeking genetic variants associated with multifaceted set of observable characteristics to advance our understanding about genetics. Technological advancements are assisting the scientists to quickly create, store and analyze the data as fast as possible and as efficient as possible. The NCBI and other organizations maintain genome sequences, proteins, RNA, DNA and other information of all species as well as their behavioral data. There is a lot and lot of data. Translating these data into useful insights which can be used for research and innovation is a main concern.

Big Data Analysis for Green Computing

Big Data Analysis for Green Computing

Author: Rohit Sharma

Publisher: CRC Press

ISBN: 9781000481778

Category: Computers

Page: 186

View: 489

This book focuses on big data in business intelligence, data management, machine learning, cloud computing, and smart cities. It also provides an interdisciplinary platform to present and discuss recent innovations, trends, and concerns in the fields of big data and analytics. Big Data Analysis for Green Computing: Concepts and Applications presents the latest technologies and covers the major challenges, issues, and advances of big data and data analytics in green computing. It explores basic as well as high-level concepts. It also includes the use of machine learning using big data and discusses advanced system implementation for smart cities. The book is intended for business and management educators, management researchers, doctoral scholars, university professors, policymakers, and higher academic research organizations.

Python Data Analysis

Python Data Analysis

Author: Ivan Idris

Publisher: Packt Publishing Ltd

ISBN: 9781783553365

Category: Computers

Page: 348

View: 382

This book is for programmers, scientists, and engineers who have knowledge of the Python language and know the basics of data science. It is for those who wish to learn different data analysis methods using Python and its libraries. This book contains all the basic ingredients you need to become an expert data analyst.

Big Data Analytics and Knowledge Discovery

Big Data Analytics and Knowledge Discovery

Author: Matteo Golfarelli

Publisher: Springer Nature

ISBN: 9783030865344

Category: Computers

Page: 282

View: 781

This volume LNCS 12925 constitutes the papers of the 23rd International Conference on Big Data Analytics and Knowledge Discovery, held in September 2021. Due to COVID-19 pandemic it was held virtually. The 12 full papers presented together with 15 short papers in this volume were carefully reviewed and selected from a total of 71 submissions. The papers reflect a wide range of topics in the field of data integration, data warehousing, data analytics, and recently big data analytics, in a broad sense. The main objectives of this event are to explore, disseminate, and exchange knowledge in these fields.

Big Data Analytics

Big Data Analytics

Author: Frank Millstein

Publisher: Frank Millstein

ISBN:

Category: Computers

Page: 252

View: 324

Big Data Analytics - 2 BOOK BUNDLE!! Data Analytics With Python Data is the foundation of this digital age that we live in. With this book, you are going to learn how to organize and analyze data and how to interpret vast sources of information. This book covers various topics on data analytics such as data analytics applications, data analytics process, using Python for data analytics, Python libraries for data analytics and many other that will help you kick-start your data analytics journey from the very beginning. In this book you are going to learn how to use Python its tools in order to interpret data and examine those interesting data trends and information, which are important in predicting the future. Whether you are dealing with some medical data, sales data, web page data, you can use Python in order to interpret data, analyze it and obtain this valuable information. You can also use this data for creating data analytics models and predictions. Here Is A Brief Preview of What You’ll Learn In This Book… Data analytics applications Data analytics process How to install and run Python Python data structures and Python libraries Python conditional construct and iteration Data exploration using Pandas Pandas series and dataframes Data munging and distribution analysis Carrying out binary operations Data manipulation and categorical variable analysis How to build a predictive model And of course much, much more! Natural Language Processing With Python This book is a perfect beginner's guide to natural language processing. It is offering an easy to understand guide to implementing NLP techniques using Python. Natural language processing has been around for more than fifty years, but just recently with greater amounts of data present and better computational powers, it has gained a greater popularity. Given the importance of data, there is no wonder why natural language processing is on the rise. If you are interested in learning more, this book will serve as your best companion on this journey introducing you to this challenging, yet extremely engaging world of automatic manipulation of our human language. It covers all the basics you need to know before you dive deeper into NLP and solving more complex NLP tasks in Python. Here Is a Preview of What You’ll Learn Here… The main challenges of natural language processing The history of natural language processing How natural langauge processing actually works The main natural language processing applications Text preprocessing and noise removal Feature engineering and syntactic parsing Part of speech tagging and named entity extraction Topic modeling and word embedding Text classification problems Working with text data using NLTK Text summarization and sentiment analysis And much, much more... Get this book bundle NOW and SAVE money!